Function reference
-
colino
- colino: A collection of steps for feature selection to use with the 'recipes' package
-
cutoff()
- Parameter functions for feature selection recipes
-
entropy()
- Parameter functions for feature selection recipes
-
pull_importances()
- Pull feature importances from a parsnip fitted model
-
step_select_aov()
tidy(<step_select_aov>)
- Filter Categorical Predictors using the ANOVA F-Test
-
step_select_boruta()
tidy(<step_select_boruta>)
- Feature selection step using Boruta
-
step_select_carscore()
tidy(<step_select_carscore>)
- Feature selection step using the CAR score algorithm
-
step_select_fcbf()
- Fast Correlation Based Filter for Feature Selection
-
step_select_forests()
tidy(<step_select_forests>)
- Feature selection step using a random forest feature importance scores
-
step_select_infgain()
tidy(<step_select_infgain>)
- Information gain feature selection step
-
step_select_linear()
tidy(<step_select_linear>)
- Feature selection step using the magnitude of a linear models' coefficients
-
step_select_mrmr()
tidy(<step_select_mrmr>)
- Apply minimum Redundancy Maximum Relevance Feature Selection (mRMR)
-
step_select_relief()
tidy(<step_select_relief>)
- Feature selection step using the Relief algorithm
-
step_select_roc()
tidy(<step_select_roc>)
- Filter Numeric Predictors using ROC Curve
-
step_select_tree()
tidy(<step_select_tree>)
- Feature selection step using a decision tree importance scores
-
step_select_vip()
tidy(<step_select_vip>)
- Feature selection step using a model's feature importance scores or coefficients
-
step_select_xtab()
tidy(<step_select_xtab>)
- Filter Categorical Predictors using Contingency Tables
-
top_p()
- Parameter functions for feature selection recipes