Skip to contents

All functions

cutoff()
Parameter functions for feature selection recipes
entropy()
Parameter functions for feature selection recipes
pull_importances()
Pull feature importances from a parsnip fitted model
step_select_aov() tidy(<step_select_aov>)
Filter Categorical Predictors using the ANOVA F-Test
step_select_boruta() tidy(<step_select_boruta>)
Feature selection step using Boruta
step_select_carscore() tidy(<step_select_carscore>)
Feature selection step using the CAR score algorithm
step_select_fcbf()
Fast Correlation Based Filter for Feature Selection
step_select_forests() tidy(<step_select_forests>)
Feature selection step using a random forest feature importance scores
step_select_infgain() tidy(<step_select_infgain>)
Information gain feature selection step
step_select_linear() tidy(<step_select_linear>)
Feature selection step using the magnitude of a linear models' coefficients
step_select_mrmr() tidy(<step_select_mrmr>)
Apply minimum Redundancy Maximum Relevance Feature Selection (mRMR)
step_select_relief() tidy(<step_select_relief>)
Feature selection step using the Relief algorithm
step_select_roc() tidy(<step_select_roc>)
Filter Numeric Predictors using ROC Curve
step_select_tree() tidy(<step_select_tree>)
Feature selection step using a decision tree importance scores
step_select_vip() tidy(<step_select_vip>)
Feature selection step using a model's feature importance scores or coefficients
step_select_xtab() tidy(<step_select_xtab>)
Filter Categorical Predictors using Contingency Tables
top_p()
Parameter functions for feature selection recipes