Package index
-
cutoff() - Parameter functions for feature selection recipes
-
entropy() - Parameter functions for feature selection recipes
-
pull_importances() - Pull feature importances from a parsnip fitted model
-
step_select_aov()tidy(<step_select_aov>) - Filter Categorical Predictors using the ANOVA F-Test
-
step_select_boruta()tidy(<step_select_boruta>) - Feature selection step using Boruta
-
step_select_carscore()tidy(<step_select_carscore>) - Feature selection step using the CAR score algorithm
-
step_select_fcbf() - Fast Correlation Based Filter for Feature Selection
-
step_select_forests()tidy(<step_select_forests>) - Feature selection step using a random forest feature importance scores
-
step_select_infgain()tidy(<step_select_infgain>) - Information gain feature selection step
-
step_select_linear()tidy(<step_select_linear>) - Feature selection step using the magnitude of a linear models' coefficients
-
step_select_mrmr()tidy(<step_select_mrmr>) - Apply minimum Redundancy Maximum Relevance Feature Selection (mRMR)
-
step_select_relief()tidy(<step_select_relief>) - Feature selection step using the Relief algorithm
-
step_select_roc()tidy(<step_select_roc>) - Filter Numeric Predictors using ROC Curve
-
step_select_tree()tidy(<step_select_tree>) - Feature selection step using a decision tree importance scores
-
step_select_vip()tidy(<step_select_vip>) - Feature selection step using a model's feature importance scores or coefficients
-
step_select_xtab()tidy(<step_select_xtab>) - Filter Categorical Predictors using Contingency Tables
-
top_p() - Parameter functions for feature selection recipes